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Abstract—Oxidation of cis-3,5-di-tert-alkyl-3,5-diphenyl-1,2,4-trithiolane with an excess amount of dimethyldioxirane gave the
1,2-dioxide, a vic-disulfoxide, and it was verified that the 1,2-dioxide was formed specifically from one of two stereoisomeric
monoxides. The structures of the monoxides and the 1,2-dioxide were determined by X-ray crystallography. © 2002 Elsevier
Science Ltd. All rights reserved.

The chemistry of vic-disulfoxides [RS(O)S(O)R�] has
been drawing much attention,1–6 and recently we suc-
ceeded in the first isolation and structure determination
of a compound bearing an S�S(O)�S(O)�S linkage by
the oxidation of tetrathiolane 1 with dimethyldioxirane
(DMD).7 The two oxygen atoms of the tetrathiolane
2,3-dioxide 2 take the diaxial orientations characteristi-
cally, where the anomeric effect by adjacent sulfur
atoms7b,8,9 at the both ends seems to contribute to the
stability of 2. Naturally, our attention was turned to the
synthesis of vic-disulfoxides not having such a special
effect, that is, those which have a C�S(O)�S(O)�C
linkage. The above-mentioned study, as well as the
study by Folkins and Harpp on the oxidation of 4,5-
dithiabicyclo[3.2.1]octanes 3,3 suggests that vic-disulf-
oxides derived from cyclic disulfides possess fair
stability compared with those derived from acyclic
disulfides,4 thus leading us to investigate the oxidation
of 1,2,4-trithiolanes.10 Here we report the oxidation of
tetrasubstituted 1,2,4-trithiolanes 4,11 which gives the
desired vic-disulfoxides.

Trithiolane 4a was treated with an acetone solution of
DMD12 (4 molar equiv.) in CH2Cl2 at −20°C to give a
dioxide (42%) which showed two strong absorptions
due to the S�O stretching vibrations (1064 and 1104
cm−1) in the infrared spectrum. Oxidation of 4b with
DMD proceeded similarly to give a dioxide in 60%
yield. The structure of the dioxide of 4b was finally
determined by X-ray crystallography to be 1,2-dioxide
5b (Scheme 1, Fig. 1). The structure of the dioxide of 4a
was thus elucidated to be 5a based on the similarity of
the 13C NMR and IR data of 5a with those of 5b.13

In the crystalline state, the trithiolane ring of 5b takes a
near-envelope conformation [C(5)�S(4)�C(3)�S(2)
11.4(3)°]. In contrast to the structure of tetrathiolane
2,3-dioxide 2, both the oxygen atoms of 5b occupy the
equatorial orientations, where the torsion angles of
C(5)�S(1)�S(2)�C(3) and O(1)�S(1)�S(2)�O(2) were
−57.3(2) and 73.6(3)°, respectively. The S(1)�S(2) bond

Scheme 1.
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Figure 1. ORTEP drawing of 5b (50% ellipsoids). Selected
bond lengths (A� ) and bond angles (°): S1�S2 2.249(2), S2�C3
1.860(6), C3�S4 1.862(6), S4�C5 1.829(5), C5�S1 1.838(5),
C3�C6 1.603(7), C3�C7 1.503(9), C5�C8 1.567(7), C5�C9
1.520(7), S1�O1 1.468(5), S2�O2 1.455(5); S1�S2�C3 94.5(2),
S2�C3�S4 105.4(3), C3�S4�C5 105.3(2), S4�C5�S1 96.5(2),
C5�S1�S2 88.2(2), C6�C3�C7 113.9(4), C8�C5�C9 113.6(4).

Figure 2. ORTEP drawing of 6 (50% ellipsoids). Selected
bond lengths (A� ) and bond angles (°): S1�S2 2.1133(9), S2�C3
1.838(2), C3�S4 1.855(2), S4�C5 1.814(2), C5�S1 1.880(2),
C3�C6 1.586(3), C3�C7 1.522(3), C5�C8 1.584(3), C5�C9
1.514(3), S1�O1 1.457(2); S1�S2�C3 98.63(7), S2�C3�S4
107.13(11), C3�S4�C5 102.83(9), S4�C5�S1 96.72(10),
C5�S1�S2 92.78(6), C6�C3�C7 111.7(2), C8�C5�C9 113.8(2).length of 2.249(2) A� is elongated by approximately 10%

compared with usual S�S bonds.18 For reference, the
S�S bond length of 4a is 2.024(2) A� .11a The dioxides 5
was stable in the crystalline state for a long time in a
refrigerator but decomposed gradually in solution at
room temperature to give the corresponding
thioketones.

In order to clarify the course of the formation of
1,2-dioxides 5, we examined stepwise oxidation of
trithiolane 4a. Oxidation of 4a with 1.2 molar amounts
of DMD gave two stereoisomeric monoxides 6 and 7 in
54 and 39% yields, respectively (Scheme 2).19 These two
isomers were separated by silica-gel column chromato-
graphy, and their structures were determined definitely
by X-ray crystallographic analyses (Figs. 2 and 3). A
1-oxide 6 takes a half-chair conformation with the
oxygen atom being cis to the phenyl group and occupy-
ing the equatorial orientation. The S(1)�S(2) bond
length was 2.1133(9) A� , and the C(5)�S(1)�S(2)�C(3)
torsion angle was 45.82(9)°. The other 1-oxide 7 takes
an envelope conformation [S(1)�S(2)�C(3)�S(4)
3.07(12)°], where the oxygen atom is trans to the phenyl
group and occupies the axial orientation. The S(1)�S(2)
bond length was 2.052(2) A� and the C(5)�S(1)�
S(2)�C(3) torsion angle was −32.0(2)°. The S(1)�S(2)
bond in 7 is meaningfully shorter than that in 6, which
would result in an anomeric effect in 7.7b,8,9 In the 13C
NMR spectra down to 203 K, signals due to 1,2,4-

Figure 3. ORTEP drawing of 7 (50% ellipsoids). Selected
bond lengths (A� ) and bond angles (°): S1�S2 2.052(2), S2�C3
1.858(3), C3�S4 1.832(4), S4�C5 1.818(3), C5�S1 1.897(3),
C3�C6 1.589(5), C3�C7 1.527(5), C5�C8 1.586(5), C5�C9
1.529(5), S1�O1 1.460(4); S1�S2�C3 104.94(12), S2�C3�S4
106.7(2), C3�S4�C5 101.4(2), S4�C5�S1 103.8(2), C5�S1�S2
93.10(12), C6�C3�C7 112.7(3), C8�C5�C9 112.9(3).

trithiolane carbons in 6 and 7 did not change on the
chemical shifts and shape, indicating that they take
respective single conformations in solution. We assume
that the conformations are similar to those in the solid
state. Recently, it was reported that the oxidation of
3,3,5,5-tetraphenyl-1,2,4-trithiolane with MCPBA
yielded the 1-oxide with the oxygen atom possessing the
axial orientation.10b Incidentally, there observed no for-Scheme 2.
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Figure 4.

Scheme 6.

In relation to the unexpected instability of 1,1-dioxide 8
compared with 1,2-dioxide 5, the thermal reactions of
5a and monoxides 6 and 7 were examined. Heating of
5a in refluxing CDCl3 yielded thioketone 9 in 93% yield
(Scheme 5). The formation of 2 molar amounts of 9 is
explained in terms of the extrusion of SO2 from a
rearrangement product, 8 or OS-sulfenyl sulfinate 10.1

Elemental sulfur was not detected by TLC in this
thermolysis.

On the other hand, thermal reactions of 6 and 7 in
refluxing xylene gave the identical trans-episulfide 1121

in high yields (Scheme 6). The trans stereochemistry of
11 was verified by the oxidation of 11 to give a single
episulfoxide having nonequivalent tert-butyl groups.
The stereospecific reactions of 6 and 7 would proceed
through a common thiocarbonyl ylide intermediate in a
manner similar to that in the N2-extrusion reaction of
1,3,4-thiadiazolines reported by Kellogg and
Wassenaar.22

In summary, we succeeded in the isolation and the
structure determination of 1,2,4-trithiolane 1,2-dioxides
5 in addition to two stereoisomeric 1-oxides 6 and 7.
We also disclosed that the 1,2-dioxide 5a is formed
specifically from 6 and not from the epimer 7. On this
point, the present study provides not only a route to
isolable vic-disulfoxides but also an important insight
into the chemistry of multiple oxidations of cyclic
polysulfides.
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